Heaps and trusses

A. Facchini

Università di Padova, Padova, Italy

a joint work with

M. J. Arroyo Paniagua,¹

¹Universidad Autónoma Metropolitana, Ciudad de México, México

Abstract

I will present the first notions concerning heaps and trusses. Heaps were introduced for the first time by H. Prüfer [3] and R. Baer [1]. A heap is a pair (H, [-, -, -]) consisting of a set H and a ternary operation $[-, -, -]: H \times H \times H \to H$, $(x, y, z) \mapsto [x, y, z]$, such that, for all $v, w, x, y, z \in H$, [v, w, [x, y, z]] = [[v, w, x,], y, z], [x, x, y] = y, and [y, x, x] = y. Truss is a much more recent algebraic structure [2]. A truss is a heap with a further associative binary operation, denoted by juxtaposition, which distributes over [-, -, -], that is, for all $w, x, y, z \in T$, w[x, y, z] = [wx, wy, wz], [x, y, z]w = [xw, yw, zw], and [x, y, z] = [z, y, x].

Keywords

Ternary operations, Heaps, Trusses, Commutators of congruences (in heaps), Idempotent endomorphisms of heaps, Semidirect products of heaps, Derivations in trusses.

References

- Baer, R.: Zur Einführung des Scharbegriffs, J. Reine Angew. Math. 160 (1929), 199–207.
- [2] Brzeziński, T.: Trusses: between braces and rings. Trans. Amer. Math. Soc. 372 (2019), 4149–4176.
- [3] Prüfer, H.: Theorie der Abelschen Gruppen. I. Grundeigenschaften. Math. Z. 20 (1924), 165–187.

1